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The Folklore is replete with stories of "se- graphs as formal objects it is helpful to keep in mind
cure" protection systems being compromised in a the following informal semantics: A vertex corres-
gpatter of hours. This is quite astounding since one is ponds to a "user", r = "read", w = "write”, c = "call".
pot likely to claim that a system is secure without If there is a directed arc from x to y with label r
gome sort of proof to support the claim. In practice, (respectively w,c), then x can read y (respectively
proof is not provided and one reason for this is clear: write, call). We interpret this to mean that not only
slthough the protection primitives are apparently can x read the program and data of y but also
quite simple, they may potentially interact in ex- that x can read the security intormation of y. (See
tremely complex ways. Vague and informal arguments, a discussion of these issues in Section 1I1.) For
therefore, often overlook subtleties that an adversary example, in the graph
can exploit. Precision is not merely desirable for
protection systems, it is mandatory. o " .

Accordingly, this paper is devoted to the k- =t

snalysis of a specific protection system of both theo-
retical interest and practical interest. Theoretical-
ly, these problems are graph theoretic in flavor and z
they can be reasonably be viewed as generalizations of

"transitive closure'. Roughly these protection ques-

tions can be modeled as: X can write y, x can read z, but y cannot write 2z |
since this edge 1s missing. More formally, a protec- ]
Given: A directed labeled graph G and a set of tion graph is a finite, directed graph with each arc ;
revriting rules R. labeled by a nonempty subset of {r,w,c}. We interpret |
¥ the case where an arc is labeled with other than a |
Determineg: Whether or not there 15 a sequence single element to mean that multiple "rights" are Z
of graphs G;, G,, ..., G such that G = G;, G has allowed. |
y property X, and Gi+1 follows from G1 by some rule in R. |
This protection model, called the take and :
Here the G, represent the protection state and property grant system, is now completed by presenting five |
X encodes that there is a protection violation in G _. rewriting rules. |
Our goal then is to show that it is impossible to |
reach such a G , i.e. that a protection violation is 1. Take: 1let x, y, and z be three distinct

impossible. vertices in a protection graph and let there be an arc ‘
from x to y with label y such that r € y and an arc é
Property X is frequently stated as from y to z with some label a ¢ {r,w,c}. Then the |

take rule allows one to add the arc from x to z with

X: there is an edge from vertex p to q with label a yielding a new graph G'. Intuftively x takes

ladbel a. the ability to do a to z from y. We will represent*

E this rule by
3 For these properties our protection questions do indeed
look very much like transitive closure questions. In-

deed 1f the rules R only allowed the addition of edges, a q
- then these problems would be easily solved by known
5 methods. They are not so simple. The rules of inter- r a
= est to those in protection, and the particular rules *——ro——o =>
3 ve will study, allow new vertices to be added. This x y - £ x y z

simple change of allowing graphs to ''grow new vertices"
make these problems challenging. Indeed the particular

one we will study is no longer even obviously 2. Grant: Let x, y and z be distinct vertices
decidable. in a protection graph G and let there be an arc from x
- to y with label y such that w ¢ y and an arc from x to
R Let us now make the above concrete by intro- z with label a ¢ {r,w,c}. Then the grant rule allows
: ducing the particular protection system we will study. one to add an arc from y to z with label a yielding
We consider directed graphs whose arcs are labeled with a new graph G'. Intuitively x grante y the ability to
: an r or a wor a c. While we will manipulate these do a to z. In our representation grant is given by:
®
1
t This work was supported in part by NSF under * Here and in later diagrams we abuse notatign by
DCR-75-07251. writing an explicit right as arc label (x ®~—o y) to
mean_the arc label contains that right (i.e., 3
tt This work was supported in part by the Office of x such that r ¢ y). We also omit the braces
Naval Research grant NOOO14-75-C-0752 ard in part by around sets.

NSF grant DCR74-24193.
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3. Create: Let x be any vertex in a protection
graph, then create allows one to add a new vertex N
and an arc from x to N with label {r,w,c} yielding a
new graph G'. Intuitively x creates a new user that
it can read, write and call. In our representation

o r,w,c ®

4. Call: Let x, y and z be distinct vertices
in a protection graph G and let a ¢ {r,w,c} be an arc
from z to y and y an arc from x to z such that ¢ € y.
Then the call rule allows one to add a new vertex N,
an arc from N to y with label a, and an arc from N to:>
z with label r yielding a new graph G'. Intuitively

x is callinc a program z and passing parameters y.
The N “process" is created to effect the call: N can
In our

read the program z and can a the parameters.
representation

5. Remove: Let x and y be distinct vertices in
a protection graph G with an arc from x to y with
label a. Then the remove rule allows one to remove
the arc from x to y ylelding a new graph G'. Intu-
itively x removes its rights to y. In our represen-
tation,

¥
°

The remove rule is defined mainly for complete-
ness, since prctection systems tend to have such a
rule. Moreover, we expect to study properties of
protection systems other than protection violations
which will use remove in a crucial way. But, for the
present remove may be ignored.

The operation of applying one of the rules to
a protection graph G yielding a new protection graph
G' 1s written G |~ G'. As usual G |% G' denotes the
reflexive, transitive closure.

An important technical point in this system is
monotone in the sense that {f a rule can be applied,
then adding arcs cannot change this. This property
is crucial later. (See also [1].)

Now that we have seen the rules, let us look
at their behavior. We will start with a simple

question: 1in the graph

is 1t possible for y to r z? The answer is obviously
no since there is no r arc from y to z. But we are
really asking: is there a sequence of rule applica-
tions that leads to a graph with an r arc from y to a?
More generally, say p can a q if there is a series of
rules that leads to a graph with an arc a from p to q.
Then to state our question more precisely, we ask: {s
it true that y can r z? Clearly, without create, the
answer 1is no since none of the operations take, grant
or call can apply. The following sequence of applica-
tions of the rules* shows that by using create the
answer is yes:

x r z X b 4 z
>————9
,y creates
r r
~-EeM,C
y Y N
x t
.k___l__q.
x takes N
N,
N A
r \\—\ (3
\'\0
\,
é r,w,c ™
b4 N

x - z
‘x grants

x " z
ly takes K N

\
& 1
- e |F
]
r,v,c /
Y\ N /
\\\~-- Fh

34

* In the diagrams, dashed lines are used only as a
visual aid to set off the added arcs of the current
operation.

TR ‘ . TR =




-

WPRE IR P BT S

Our main theorem is stated in the next section. This
theorem presents a complete answer to the question: is
it true that p can a g? Indeed this theorem leads
easily to a linear time algorithm for answering the
question.

A final word about how this theorem contributes
to our understanding of protection. Each user of a
protection system needs to know:

vhat information of mine can be accessed by others;
vhat information of others can be accessed by me?

The question is vague in general, but here it is ren-
dered in the simple question: is it true that p can
a q?

The types of protection models studied here
have received considerable attention recently. Our
approach is related closely to the interesting work
of Harrison, Ruzzo, and Ullman (3]. They show that
what can be called the "uniform safety problem" is
undecidable. Interpreted as a graph model, their
result says that given an arbitrary set of rules
(similar in spirit to take, grant, etc.) and an initial
graph, it is undecidable whether or not there will ever
be an arc from p to q with label a. This is a wniform
problem in the sense that the rules are arbitrary.
Even when the rules have to satisfy certain additional
constraints the results of [3) and the results of
Lipton and Snyder [5] show tnat protection is im—
practically complex.

Our view here is that since the uniform protec-
tion problem 1s so difficult and since operating
systems usually require only one fixed set of protec-
tion rules, then the nonuniform problem should be
studied. As stated before we choose the take and grant
system by studying the protection literature. Note
that some other nonuniform systems are trivially
decidable. For example, consider a very simple sys-
tem which has as its only rule, transfer, which is
represented in our graph model as:

The transfer rule was abstracted from a survey article
on security enforcement [2). The rule says that x

can give away any right it currently has. Clearly in
this system p can a q if and only if there exists ini-
tially an x such that there is an edge from x to q
with label a.

I1. Bagsic Results

A. Subject case

Our objective is to show that there are two
simple conditions that are necessary and sufficient to
¢etermine if vertex p can a vertex q. Let G be a pro-
tection graph and a ¢ {r,w,c}. Call p and q comnected
if there exists a path between p and q independent of
the directionality or labels of the arcs. Define the
predicates: X

Condition 1: p and q are connected in G.

Condition 2: there exists a vertex x in G and an arc
from x to q with label B such that

a = r implies (r,c} n 8 = @, or
o= w implies w ¢ B, or
a = c implies c ¢ B.

Informally, these conditions will state that p can a
q if and only if there is an undirected path between
p and q (condition 1) and some vertex x a's q (con-
dition 2).

The first step is to demonstrate the necessity
of conditions (1) and (2).

Lemma 1: Let G be a protection graph with vertices p
and q and let a be a label. Then p can a q is true
implies conditions (1) and (2) hold.

Proof: 1If there is an arc with label a from p to q in
G then (1) and (2) are satisfied, so suppose there is

no a arc from p to q in G and G ,...,Gn is a sequence
such that p can a q. If (1) is not satisfied in G1
then it is not satisfied in G since no rule

application connects vertices not already connected.
If (2) is not satisfied in G, let c1 be the first

graph satisfying (2) and G, , - G- 1f p is taken or

granted, the choice of G, is violated. Create cannot
place an incoming arc to'q, so p must be call. But
regardless of what a is, p = call violates our choice

of G- 8]

To simplify matters later and to clear up an
apparent anomaly in condition (2), we next show that
if a user is allowed to call another user then he
is allowed to read him as well. It is this fact that
allows us to write {r,c} n 8 = § in condition (2)
rather than just r ¢ B.

Lemma 2: 1In a protection graph G, x LY y implies
x 2% y.

Proof: Apply the following rules:

c | X. < .y
> — 0
x B X Create :
1
(1
ir,vw,c

 Pbme——

}_______ x
x call
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,,__“ x c y
N2 grant

X take

We next prove a key lemma that shows that the
directionality and labels along a connected path are
unimportant. Call vertices p and q of a protection
graph directly comnected if there is an arc between
them independent of the directionality.

Lemma 3: Let p, q and x be distinct vertices in a pro-
tection graph, let there be an arc from x to q with

label a and let p and x be directly connected. Then
P can a q.

Proof: By monotonicity, there are only six distinct
cases.

Case 1:

a
- SO \
r a r a
——o—" .o —_ AR SV I §
P x q ,p take P x q
Case 2:

v a w a
*——ro—— @ _— r————
P x 1 p create P . x q

:r.v.c

P take

r,w,c rve

c a
P p O———ro—————@
Case 3: p ® q
By lemma 2 this can be written as

c,r a
o———ro——e
P s q

and we can appeal to case 1,

x
Case 4: p o—F o3 o q

Ip Create

P r x a

r,w,c}
(]

$

x
Case S5: pe—2’l o 8 9

w a
lx grant P ¥ - |
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Case 6: B Gtrem—e—————g l
P take

By lemma 2 this can be written as

" P ...L'_c._.—g—-*O q o
1.0 Lemma 5: Let p, q and x be distinct vertices in a
and we can apply case 4. protection graph such that p is directly connected to
q and there is an arc from x to q with label y such
that v ¢ y. Then p can w q. i

We now use lemma 3 to prove three additional Proof: We spply the followiag rules:

lemmas to be used in the basis of our later induction.
q
Lemma 4: Let p, q and x be distinct vertices in a p’————-«—L—.‘
protection graph such that p is directly connected to
q and there is an arc from x to q with label y such

' q
that {r,c} n vy # §. Then p can r q. Sicreito p.__.’___u_’. ”
]

'
Proof: By lemma 2 we can assume that y = r. Then we :r.v.c
apply the following rules*: i
‘ é
' i Xy x ]
| Pe ; LA q
q create . '———- P, 4 x
‘ :r,v,c X grant “
1 nLw,c
(] \\ r,%%C
Y ) ‘ \s‘
1 u “
|
% -~
| o N W
;» l P, i %
E X grant q 1
| -,w.c"
| ’
I -
| N

By application of lemma 3 (on path p, q, x and
N) we realize

_,.__,.VV

By spplication of lemma 3 (on the path
| 4 Py q, x, N) we can realize

——

(+) p —e q represents directly connected.

7
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[ormmg 6: Let p, q and X be distinct vertices in a

protection graph such that p ia directly connected to
q and there is an arc from x to q with label y such
that ¢ ¢ y. Then p can c q.

Proof: Apply the following rules:

q
Pop— o —S—o*

}______ P.___.__g*_ii._,*
X create

Ix call

\\Q
r 3 r,w,c
\\
r,w,c\
N2 Ny

By an application of lemma 3 (om q, Xx, Nl) we
realize

. q c
r______. P._____:? x
’
r,wcl’ r r,w,c
\ J r,w,C
\ N N
\\a-_”’/ 1

By s second application of lemma 3 (on p, q,
X, Nl) we get

8
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Theorem l: Let p and q be distinct vertices in a
protection graph and a a label. Conditions (1) and
(2) are necessary and sufficient to imply p can a q.

Proof: Lemma 1 demonstrates necessity so we proceed
by induction to show sufficiency. Let

P™ xn. ‘n-l""' xl' xo = q be the vertices on s
connected path.

(Basis) For n = 1, there are two possibilities. The
x guaranteed by condition (2) either coincides with

X, = p in which case the sufficiency is immediately
true or else x and x, are distinct. By lemmas 4, S
and 6, p can a q.

(Induction) Suppose the theorem is true for n 2 1

and p = X 41 and X +1 is directly connected to x . By

hypothesis x cana a, and by leuma 3 this implies

X 41 ©an0 a q. 0
Corollary 1: There is an algorithm for deciding if

P can a g that operates in linear time in the size
of the protection graph.

Proof: To verity condition (1) apply Tarjan [6].
Verifying condition (2) requires no more time than
scanning the in arcs to vertex q. 0

An obvious consequence of the constructions of this
section is that it is simple to acquire the right to
a given object if it can be acquired.

Corol 2: 1If p can a q then there is an algorithm
to add an arc from p to q with label a that is linear
in the length of the path between p and q.

The consequence of theorem 1 is that we can
precisely state the protection "policy" for our tcake
grant system:

Policy: 1f p can initially read (write) (call) q thea
any user in the connected component containing p and q
can also obtain the right to read (write) (read and
call) q.

The policy is probably less discriminating
than the reader might have expected. This is especial-
ly true considering that people usually "believe"
these systems to be more discriminating. The diffi-
culty is that up to now we have, for technical reasons,
abstracted away an important distinction that is
usually made for capability based security systems:
the subject-object distinction.

W \
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B. Subject/Object Security

The vertices of our graphs have been thought
of as ''users," i.e. active agents capable of taking
and granting. But these properties are not usually
ascribed to files. Hence, it is customary to rec-
ognize two kinds of system components: subjects and
objects. [3] In our graph model we can think of
the vertices as being two colored.

To extend our present model to incorporate
objects, we define a subject-object protection graph
as a finite, directed graph whose vertices are par-
titioned into two sets, subjects and objects, and
vhose arcs are labeled with {r}, {w} or {r,w}. An
§-0 take grant system has the following rewriting
rules, where solid vertices represent subjects, open
vertices represent objects and crossed vertices
represent either subjects or objects.

a
Take: o2 1e = i"lllll!.kﬁ
x y z x y z
5 a
Srant: é\ =>
x y z x y z
Create: © => PR TL IS
x x N

Az usual, x, y and z must be distinct.

¥ The subject-object protection graphs do not use
¢y nor is the call operation defined for the S-0
take grant system. We conjecture that this can be
‘-ae with little difficulty, but it contributes little
to the subsequent (already too complex) development.

In order to see that the above rules do in fact
tatroduce a new set of problems, consider the following
¢-5ject-object protection graph:

' .
:';: fot that {f all vertices were subjects, then by
..,,': ;' P can r q. As it is, p cannot r q (see

H e 5"3") even though the w's on the diamond
,..,“:lh°: information" (but not "security

“ve ytlon™) could move from p to q. The reason

-SV Information" cannot be moved around is that
ieme o 3 taking and granting to accomplish its

ing ;ﬁl:"d objects are prevented by the rules from

e n Accordingly, objects may be thought of as

Programs as well as files.

39

But, if we add an "agent" vertex, t, to the
previous diagram,

p can r q, as the following sequence establishes:

lt take

t grant

q take
q grant

8 Create
8 grant

N take
N grant
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And now, by a sequence of 3} takes, p can r q.

The effect of the preceding discussion {s that
objects can form "barriers" for security information
(e.R., in diagram *) but that in closely related cases
(e.g., diagram **) the barrier is ineffective. Thus,
the addition of objects has increased the complexity
of these systems. We dedicate the remainder of this
section to establishing conditions under which p can
a q for S-0 take-grant systems. We only treat the
"subject-subject case", i.e., when p and q are both
subjects.

We will now proceed with the analysis of the
SO take grant system.

Let p and q be subjects and let x,,...,
(k 2 1) be objects such that p directly connect
to x,, x directly connected to X410 and X, directly

Xpseees Xy
q is a path from p to q. With each such path we
asgsociate a word over the alphabet.

connected to q. Then we will say that p,

+ +« + >
{r, r, w, w}

formed by concatenating the edge labels in the order
from p to q (with the obvious interpretation:
r

O———0O corresponds to T and so on.) For example,
the path

+ >+ &
has the word r w w r assoclated with it.

Let E be the union of the following regular
events:

(I r
@t
3 @ONm?
O)
()
(6)

m~mt
@t S
O S

where At < . The key idea behind this definition
is that paths with words that lie in E allow their
subjects (i.e., end points) to "communicate'. More
precisely,

Lemma 7: 1f p, X, 40004, X, , q 18 a path with a word in
E, then there is & sequencCe of take, grants, and
creates such that p and q are directly connected.

The key to showing the decidability of the SO
take and grant system is to, in a sense, obtain a
converse to this lemma. In order to state this result
we need several further concepts.

Let G be a subject object protection graph.
Then B is a block of G provided B is a maximal set of
subjects such that B is connected with respect to the
relation: directly connected. Notice that in diagram
* p and q are in different blocks while q aud e are in
the same block. A bridge between two distinct blocks

40
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is a path p, x ,...,
in the other such that the word of the plth is in p,
In diagram **, there is a bridge from p's block to
t's block and a brdige from t's block to the q~s
block.

s q with p in one block ang

We are now ready to state our theorem: '

Theorem 2: Let G be a subject/object protection
graph. Also let p,, 9, be subjects with some edge
from some subject fa q° q, with label a € {r,w}. Then
Py can a q, if and only if

Condition 3: there exists a sequence of blocks
Bl""' Bm with Py in Bl, 99 in Bm and for each
i=1,..., o1 there is a bridge from Bi to 31+1.
Proof: First suppose that Conditica 3 is true. Then
by lemma 7 there is a sequence of take and grants and
creates that get Pg and 9 in the same block. Now by

theoren 1, Pg can a q,. We must show that condition

3 is true. Assume that it is not.

For each path p, x_,..., ,» qQ that joins two
blocks use lemma 7 to get' p, q directly connected.
Let H be the resulting graph. Then in H, p can a q
and there are no bridges. Moreover, since conditiog

3 is false, Py and 9, lie in different blocks. Now
since p. can a 95 this is a sequence of operations
that wi?l cause p and q, to be directly connected;

thus there must bé a plaCe where two vertices of
different blocks are made to be directly comnected.
We plan to show that this is impossible.

We first observe that if two vertices of
different blocks are made directly connected at some
point, then there must already exist a bridge between
these blocks. (But not necessarily a bridge in H.)
In detail let p, q reside in distinct blocks in H'

(H I;-B') and same operation add an edge from p to q
with label B. Then if this operation is a take

po—fo B a4
3 x S,
8

it follows that p, x, q 18 a bridge between the blocks.

On the other hand, if this operation is a grant

w B
—F - P~
x \\\\\\\~\‘.~—-ji-—’—”/,;;:. q
8

Then p, q are already in the s&ze block which is
impossible Thus we know that there is a sequence of
operations on H that creates a bridge between two
distinct blocks. Let H' be such that there is no
such bridge in H' and H" has one where

H |z B |=E"

Now we need only argue that H' must already
have a brdige to complete the proof. Let
Py Rypvoey , q be the bridge in H". Clearly one of
its edges was added by either a take or grant from H'.
First assume that it was a take. Then (convention:

P =X 4" Xyy)

S . w
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for some vertex y and some label B. (We have assumed

the edge goes from x1 to x1+1; the dual case is

similar.) By the definition of path, x
p, 1.e., 1 = 0.

1 must equal

If y is a subject then y, Xpseees

x4 is already a bridge; 1if y is an object then
Pr Yo Xpocees s is already a bridge since 1if

t& is in E then so is ;36. Thus the operation was not

a take. It can then only be a grant. Thus,
P = & < -o—Wlq
"1 X
B
s

for some vertex s and label B. (We have again
assumed a direction without loss of generality.) Now
s is in the same block as q. For either x4 " qor

s, 11+1..... ‘k' q is a bridge: the latter uses the

fact that E is closed under suffix. Thus Xy # p. Now

ve claim that p, xl..... xi. s is a bridge which is

impossible: If B = r, then we are using the fact that

- -
8zA in E implies éw in E.

If 8 = w, then we are using the fact that

- -
8wl in E implies 6w in E.

Therefore we have reached a contradiction and the
theorem is proved.

Evidently, the S-0 take and grant system provides for
a more discriminating policy than the take and grant
system,

Corolloary 3: For the SO take and grant system there
is an algorithm to decide if p can a q.

ITI. Discussions

We have used a "generalization" of transitive
closure in order to abstract the behavior of two kinds
of protections systems: those with just subject com-
ponents and those with subject-object components. Our
choice of primitive rules has been strongly motivated
by the protection literature. But we do not believe
wve have defined the only interesting set of protection
fules. There are probably many others and we expect
that much work remains in identifying sets that may be
efficiently verified as well as having highly discri-
minating policies.

Another direction for research is to add inert
rights. For example consider a protection graph G
vhere there is an edge from vertex x to vertex q with
label £ where £ is a new type of label. We then wish
to know if p can £ q, i.e. if there is a series of
takes, grants, creates, and calls that lead to a

41

graph with an edge from p to q with label ¢ .
to this problem 1s that while label £ can be taken and
granted it has no special role(s) as r,w, and ¢ do.

The label £ is simply something that is passed around,

The key

and that is all. A graph such as

Q=—————=O0———0
P q

shows that our theorem 1 1s no longer true.

Another way to modify our system is to control
the amount of cooperation necessary to obtain a par-
ticular right. With each rule application the vertex
that 1s denoted x in our definitions will be called

a congpirator. Thus in
Po T 5@
T i create

x is a conspirator. Then an interesting question is
can p can a q with at most m conspirators.

One might then hope to attach some kinds of
likelihoods in a precise way to whether or not a
system is secure.

In general there are many other problems to
be studied. All of these problems are in a sense gen-
eralizations of transitive closure. The key and most
important aspect of this generalization is that the
most interesting rules allow "growth", i.2. the
addition of new vertices. It appears that under-
standing the structure of such problems is interesting
beyond its application to the study of protection
models.

References

1. E. Cohen.
Ph.D. Thesis (in progress), Carnegie-Mellon
University, 1976.

2. G. S. Graham and P. J. Denning.
Protection principles and practice.
AFIPS Conference Proceedings 40:417-429, 1972.

3. M. A. Harrison, W. L. Ruzzo, and J. D. Ullman.
On protection in operating systems.
Proceedings of the 5th annual SIGOPS Conference,
1975.

4. A. K. Jones.
Protection in programmed systems.
Ph.D. Thesis, Carnegie-Mellon University, 1973.

5. R. J. Lipton and L. Snyder.
Synchronization and security.
In preparation, 1976.

6. R. E. Tarjan.
Depth first search and linear graph nlgorlthm..
SIAM J. Computing 1:146-160, 1972.




P R

AVEE RTINS

g

——

e S g

=

S SR

o g S

-

SECURITY CLASSIFICATION OF TwIS PAGE (When Data £rtered)

: - READ INSTRUCT!
» [l = . S
: REPORT DOCUMENTATION PACE BEFOPE, COMPLET(N( FORM
1. REPORT NUMBEd. AE— 4. COVT ACCES! ON NOJ 3. REEHMERTSCTATALOS NUMEER
7 ,// /#.—.-103 / ¥ : //}[ o2 ¢ o
3 . £ L -
4.~.$|’f:.;_(m Subtitle) 5. TYPE OF REPORT & PERIOD COVEREL
| e i
) o o c X . . .
&‘/ A Linear Time Algorithm for Deciding Security Technical
"t | 6. PERFORMING ORG. REPORT NUMBER
8. CONTRACT OR GRANT NUMBER(s)
¢ 7= QUTH'OR(O)
=, Anita K./ Jones 3 — 7 g
— (L . o 1 » o o e by
. Richard J./Lipton //. N50014—75—C7075z‘f /1 -
Lawrencngnyder s N R e SR M zr
ey - i - \ MENT, PROJECT/TA
S. PERFORMING ORGANIZATION NAME AND ADGRESS PROGRAM ELEMEN] nu'muaas"7 A
Yale University i i ';7
Computer Science Department [ T
10 Hillhouse Ave, New Haven, CT 06520 s i
1. CONTHOLLING OF FICE NAME AND ADDRESS ‘2~REP°“’PAT,;DCT ) s —
Office of Naval Research sl e s
. — |
Information Systems Program ‘3~NUM§?E5?7EE%f:7—— ]
Arlington, Virginia 22217 e ] -&: -
14. MCNITORING AGENCY NAME & ADORESS(if different from Controlling Qflice) 15, SECURITY CLASS. (of {Eh regort) :
Unclassified '
15a. DECL ASSIFICATION DOWKGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT fof this Repert)
Distribution of this report is unlimited
17. DISTRIBUTION STATEMENT (of the adsrract enterad tn Block 20, it diltecent from Report) i
/ e
P £ -
18. SUPPLEMENTYARY NOTES
19, KLY WORDS (Continue on reverse sice if necessary and identify by block number)
prtection linear time
security % transitive closure °
take and grant operating system
subject
object ’
20. AUS‘I&ACT (Continue cn roverss side 1 necessary end identify by block number)
—The take-grant security system is introduced. Active security agents
(subjects) and passive entities (objects) are recognized. A linear time
algorithm for recognizing security violations follows from three conditions
presented that are proved to be necessary and sufficient for system Securi ity

DD |F°“” 1473  E€O0ITION OF 1 NOV 65 IS OBSOLETE

JAN 73

SECURITY CLASSIFICATION OF THIS PAGE (nhen Dary Eatered)




